
CODEC Tutorial

http://www.semoa.org/misc/CodecTutorial.pdf

Alberto Sierra
Peter Ebinger
Volker Roth

November 6, 2007

Contents

1 Introduction to CODEC 3

2 Introduction to ASN.1 5

3 Simple Coding/Decoding Example 9

4 How to implement SEQUENCE types 14

5 How to implement SEQUENCE OF types 23

6 Note about SET and SET OF types 25

7 How to implement CHOICE types 26

8 How to implement ENUMERATED types 29

9 How to implement optional fields 31

10 How to implement tagging 37

11 How to implement default values 43

12 How to implement ANY types 46

13 The OID Registry 50

A Coding/Decoding Example 53

B SEQUENCE Example 58

C SEQUENCE OF Example 66

D CHOICE Example 74

1

E ENUMERATED Example 84

F OPTIONAL Fields Example 90

G Tagging Example 100

H DEFAULT Values Example 108

I ANY DEFINED BY Example 117

J OIDRegistry Example 128

2

Chapter 1

Introduction to CODEC

What is CODEC ?

CODEC is a Java package for encoding and decoding data structures defined
by the Abstract Syntax Notation One (ASN.1), the standard notation of the
Open System Interconnection (OSI) to specify any kind of messages or data
structures. The name of the package is an abbreviation for COder/DECoder,
which represents the main part of CODEC . Besides there are Java classes rep-
resenting some complex data structures according to the family of Public Key
Cryptography Standards (PKCS).

CODEC is written in Java to make it easier to run the same code on different
platforms and is distributed as open source to allow as many developers as
possible to use it without having to buy expensive APIs.

Why CODEC has been developed ?

CODEC was developed as part of the SeMoA project (Secure Mobile Agents,
http://www.semoa.org) at the Fraunhofer Institute for Computer Graphics. In
this project was a mobile agent platform developed with a focus on security that
resulted in the need for strong cryptographic functions.

The starting point for CODEC were our problems with inconsistencies of different
crypto providers and the low efficiency of existing ASN.1 implementations. No
freely distributed Java package was available that met our requirements for the
SeMoA project. Therefore, we decided to develop our own package.

The design and the main part of the implementation of CODEC were done by
Volker Roth of Fraunhofer-IGD who founded the SeMoA project. The first
version of CODEC was ready at the end of 1999 as a well modularized and
structured package. The CDC department of the Technical University of Darm-
stadt contributed to CODEC by implementing CODEC packages for X.509 and
PKCS#12 and there is an ongoing collaboration for maintenance, enhancement
and extension of CODEC .

CODEC is distributed as open source software to make it available to as many
users as possible. You can obtain the package from the SeMoA website (http://www.semoa.org/download/step1.ht

3

http://www.semoa.org
http://www.semoa.org/download/step1.html

downloading the SeMoA bundle in which it is included. The CODEC package is
also availabale at http://www.informatik.tu-darmstadt.de/TI/Forschung/FlexiProvider/
download.html, the site of a Java crypto-provider developed at the TU Darm-
stadt using the package.

The Architecture of CODEC

CODEC provides the means to encode and decode basic ASN.1 structures and a
library of objects and functions concerning the PKCS family and the X.501/X.509
recommendations. These standards of the RSA Data Security, Inc and the In-
ternational Telecommunication Union (ITU) are written down in ASN.1.

In the CODEC bundle you can find the following packages:

• codec.asn1: Classes that represent the standard ASN.1 types as well as
methods for encoding and decoding these data structures.

Besides, there are the following packages corresponding to the PKCS:

• codec.pkcs1: Contains the class DigestInfo for supporting the encoding
within the RSA Cryptography Standard (PKCS #1).

• codec.pkcs7: Contains classes representing data types of the Crypto-
graphic Message Syntax Standard (PKCS #7), which describes a general
syntax for data that may have cryptography applied to it. PKCS #7 is
used for digital signatures and encryption in SMIME email messages.

• codec.pkcs8: Contains classes modeling data types of the Private-Key
Information Syntax Standard (PKCS #8).

• codec.pkcs9: Contains a classes modeling the Selected Attribute Types,
described in the PKCS #9 standard.

• codec.pkcs10: Contains a class modeling a certification request following
the Certification Request Syntax Standard (PKCS #10).

• codec.pkcs12: Contains classes modeling a portable format for stor-
ing or transporting a user’s private keys, certificates, miscellaneous se-
crets, etc. defined in the Personal Information Exchange Syntax Standard
(PKCS #12).

In addition, CODEC contains two packages according to the X.500 recommen-
dation series of the ITU. This series deals with an international and distributed
database (directory) to store any kind of information about persons, organiza-
tions, communicating application entities, terminals, mailing lists, etc.

• codec.x501: Classes that represent some concepts of the X.501 specifica-
tion, like X.501 names and attributes

• codec.x509: Classes representing the X.509 Directory-Authentication Frame-
work, based on digital certificates.

4

http://www.informatik.tu-darmstadt.de/TI/Forschung/FlexiProvider/download.html
http://www.flexiprovider.de

Chapter 2

Introduction to ASN.1

It is a known fact that programs running on different platforms may represent
internally the same data in different ways. That is, the internal representation
(as a string of bits) of e. g. a certain character string, is not the same in each
computer. The hardware as well as the software may affect this. For example:

• x86 Intel chips transmit the least significant byte of a word first. This is
the so called ”little-endian” system, whereas Motorola chips do just the
opposite (”big-endian” system);

• In UNIX systems the end of a line is represented by the line feed ASCII
symbol; in DOS systems this is represented with the carriage return and
the line feed ASCII symbols;

• in C language the ’\0’ character is added at the end of a character string.

Since the Internet involves the communication of applications running on di-
verse platforms it has been necessary to develop and standardize protocols for
such applications. These protocols define among other things a set of possible
messages that may be sent by the application and in particular how they have
to be encoded in a bit string for their transmission.

Since messages may comprise complex data structures a notation had to be
developed that defines the structure of the messages and the building blocks
of which they are composed. It comprises some general, abstract data types,
simple as well as structured ones. To accomplish the task of a protocol (i. e. to
define the encoding scheme of the messages) the notation also establishes some
encoding rules for the data types declared.

In the early 1980’s a notation was developed for defining the messages of the
protocols of the Message Handling Systems (MHS), a standard proposed by
the International Telegraph and Telephone Consultative Committee (CCITT)
for the exchange of electronic mail. The notation and its encoding scheme
were machine-independent and could convey complex data structures. In 1984,
CCITT standardized the notation under the reference X.409. The notation
was totally independent of the MHS system, what lead many groups that were
working on standardization of Open System Interconnection (OSI) applications

5

to realize that it could also prove useful to them. As a result, the Abstract
Syntax Notation One (ASN.1) was born and standardized in 1987 [1].

Since then ASN.1 has widened its scope out of OSI and benefited from numer-
ous improvements, in which substantial functionalities related to technological
changes in telecommunication (high rate data transfer, multimedia environment,
frequent service protocol updating, multiple alphabets, e.g. Chinese, etc) were
added.

ASN.1 provides a number of pre-defined types to describe basic data such as:

• integers (INTEGER),

• booleans (BOOLEAN),

• character strings (IA5String, UniversalString...),

• octet (8-bit bytes) strings (OCTET STRING),

• etc.

as well as constructed data types such as:

• structures, containing elements of different types (SEQUENCE),

• lists of elements of the same type (SEQUENCE OF),

• alternative types (CHOICE),

• etc.

ASN.1 also provides a notation to declare user defined data types like in the
following example:

EmailMessage ::= SEQUENCE {
from IA5String,
to IA5String,
subject IA5String,
message IA5String,
attachment OCTET STRING,
date GeneralizedTime,
urgent BOOLEAN }

ASN.1 provides sets of encoding rules which determine how each ASN.1 data
type is translated into a bit stream. The original encoding rules of ASN.1 are
the Basic Encoding Rules (BER). But with time new encoding rules have been
designed, the Distinguished Encoding Rules (DER), the Packed Encoding Rules
(PER) etc. to satisfy application dependent aspects [2]. The principle of BER
is that each ASN.1 value is encoded following the so called ”TLV” pattern: tag,
length and value. This means that every value receives a header that is usually
two bytes long. The first byte indicates the ASN.1 type of the value, the so
called tag, while the second indicates the length in bytes of the encoded value
(without the header). The following bytes represent then the encoded value.

6

Its encoding depends on its type. Each ASN.1 type has its own encoding rules.
For decoding the transmitted bit stream the receiving party first reads the the
tag and the length of the encoded value, so that it knows which bytes represent
the encoded value and how to decode them.

Tag Length Value Tag Length Value
octets octets octets octets octets octets

︸ ︷︷ ︸ ︸ ︷︷ ︸

ASN.1 object Next ASN.1 object

The next figure shows the encoding of a constructed ASN.1 object, like the
EmailMessage type declared above. The header of the constructed object is
followed by the components, each one introduced by its own data type identifier
(tag) and length:

T0 L0 T01 L01 V01 . . . T0n L0n V0n T1 L1

︸ ︷︷ ︸

Embedded ASN.1 object

︸ ︷︷ ︸

Constructed ASN.1 object

Finally a figure is presented that shows a general scenario in which ASN.1 is
used for data exchange and explain in a few words what happens in each stage
of the transmission:

Sending Application

User Input

�
..., data, data, ...

�
SEQUENCE {

c1 data

...}

� 1 0 1 1 1 0 1

Encoded ASN.1 data

�

..., data, data, ...

�
SEQUENCE {

c1 data

...}

�

Display

Receiving Application

Lets assume the data that has to be transmitted is entered by a user. The data is
packed in a message which as described by the respective protocol in ASN.1 and

7

then it is encoded. The receiving application reconstructs the ASN.1 message
from the bit stream. Then the data is extracted from the ASN.1 message and
can be then processed further (e. g. displayed).

For additional documentation regarding ASN.1 we recommend to visit
http://www.oss.com/asn1/booksintro.html, where you can find the following
online-books:

• Olivier (D.). ASN.1 Communication between Heterogeneous Systems.

• Larmouth (J.). ASN.1 Complete.

8

http://www.oss.com/asn1/booksintro.html

Chapter 3

Simple Coding/Decoding
Example

As mentioned in the previous chapter ASN.1 was designed to facilitate transac-
tions between heterogeneous systems. In this chapter some Java code is shown
that simulates such a transaction in a very simple way. The use of some of the
basic classes of the CODEC package is demonstrated by performing the following
tasks:

1. first a Java object is created that represents some data modeled by an
ASN.1 type;

2. then the ASN.1 encoding rules are applied to that Java object;

3. and finally the encoded data is decoded obtaining a Java object represent-
ing the identical data as the one created before encoding it.

When using CODEC it is important to distinguished between the two modes
of operation. The Java objects that are created in step one and step three
have two different purposes, the first one is for encoding and the second one is
for decoding.

• In step one an object for encoding is created, i.e. data stored in stan-
dard Java objects that is to be transformed into ASN.1 objects for encod-
ing. Therefore a constructor is used that takes a standard Java object as
argument.

• In step three the data is stored in an ASN.1 encoded byte array and a
Java object for decoding is created. Therefore the default constructor
for decoding is used, the constructor that does not take any arguments.

So let us start with the first step. Imagine some basic data has to be modeled,
e. g. a character string, with an ASN.1 type. There are several standard ASN.1
types that represent character strings. They differ mainly in that they compre-
hend different sets of characters. The IA5String type is one of them. The next
ASN.1 expression declares a value of this type representing the character string
”Hello World”:

9

asn1Object IA5String ::= "Hello World"

With the use of the CODEC classes such a statement would be implemented in
Java as follows:

ASN1IA5String asn1Object = new ASN1IA5String("Hello World");

As you can see a constructor for encoding is used, i.e. which takes a standard
Java object as argument (java.lang.String). ASN1IA5String is the Java class
in the codec.asn1 package that represents the IA5String type. It provides the
methods for encoding and decoding this ASN.1 type following the ASN.1 coding
rules.

In the codec.asn1 package you can find the Java classes that represent the
standard ASN.1 types as shown in table 3.1.

ASN.1 Type Java Class in CODEC package

NULL ASN1Null
BOOLEAN ASN1Boolean
INTEGER ASN1Integer

ENUMERATED ASN1Enumerated
IA5String ASN1IA5String
UTF8String ASN1UTF8String
T61String ASN1T61String
BMPString ASN1BMPString

UniversalString ASN1UniversalString
VisibleString ASN1VisibleString
PrintableString ASN1PrintableString
GeneralizedTime ASN1GeneralizedTime

UTCTime ASN1UTCTime
OBJECT IDENTIFIER ASN1ObjectIdentifier

BIT STRING ASN1BitString
OCTET STRING ASN1OctetString
SEQUENCE ASN1Sequence

SEQUENCE OF ASN1SequenceOf
SET ASN1Set

SET OF ASN1SetOf
CHOICE ASN1Choice

Table 3.1: ASN.1 types and their respective Java classes in the CODEC package

10

Encoding

ASN.1 supports several coding rules. Those implemented in the CODEC pack-
age are the Distinguished Encoding Rules (DER). The reason for this is that
these rules were designed to meet the needs of secure data transmission and
the CODEC package was developed in this context as we mentioned in the first
chapter. The class within the CODEC package that implements these rules is
the DEREncoder class. The next lines of code show how to encode the Java
instance created before:

ByteArrayOutputStream os = new ByteArrayOutputStream();
DEREncoder encoder = new DEREncoder(os);
asn1Object.encode(encoder);

First an output stream has to be instantiated. The DEREncoder instance (cre-
ated in the next line) writes the encoded data to this stream. Finally the
encode(Encoder) method of the Java instance to be encoded is called. Dur-
ing this call the encoder reads the java.lang.String instance stored within
asn1Object and writes the bytes representing the encoded IA5String value to
the output stream. The parameter passed to the method has to implement the
Encoder interface. This is an interface of the CODEC package and denotes any
class that may perform the encoding task. Till now the CODEC package only
offers the DEREncoder class for this purpose but in the future further classes
may be included in the package implementing other existing encoding rules.

With the following statement

byte[] encodedAsn1Object = os.toByteArray();

the bytes in the output stream can be stored in a byte array. The byte array will
be needed later for demonstrating the decoding process. Printing its contents
in hexadecimal representation shows the following 13 bytes:

0x16 0x0b 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x57 0x6f 0x72 0x6c 0x64
Tag Len H e l l o W o r l d

According to the TLV pattern presented in the previous chapter the first byte
(0x16) represents the data type (tag) of the ASN.1 object (IA5String). In
an adequate ASN.1 documentation you can find the correspondence between
the ASN.1 standard types and the values of their respective tags. The second
byte (0x0b, i. e. 11) means the length of the encoded value. And each of the
remaining 11 bytes represents one character of the ”Hello World” string.

Decoding

In this section it is shown how to decode the byte array just produced, i. e.
how the ”Hello World” character string can be reconstructed by creating a new
ASN1IA5String instance and reading the ASN.1 encoded bytes array. For this
purpose first a new empty ASN1IA5String instance is created:

11

ASN1IA5String newAsn1Object = new ASN1IA5String();

As you can see a constructor for decoding is used, i.e. which does not
take any arguments. As next an input stream containing the encoded data
has to be created. As you remember this data was stored in the byte array
encodedAsn1Object. The input stream has then to be passed to a DERDecoder
class instance, which decodes its contents.

ByteArrayInputStream in =
new ByteArrayInputStream(encodedAsn1Object);

DERDecoder decoder = new DERDecoder(in);

Finally the encoded data, now referenced by the DERDecoder instance, can be
decoded calling the decode(Decoder) method of the ASN1IA5String class:

newAsn1Object.decode(decoder);

Processing this statement the decoder reads the first octet of the data to be de-
coded, which represents its ASN.1 type. This type has to match the ASN.1 type
represented by the class of the CODEC instance from which the decode(Decoder)
method has been called. Otherwise an exception is be thrown. Then the next
byte is read, indicating the number of bytes that follow which represent the
encoded data value. Then the decoder decodes the data bytes representing the
encoded character string following the decoding rules for the IA5String type.
The decoded data is stored as a java.lang.String object in newAsn1Object.

You can encode and decode any other class of the CODEC package repre-
senting an ASN.1 type (as well as any subclass of them) like it has been
shown in this chapter since they all implement the encode(Encoder) and the
decode(Decoder) methods.

Note: If you remember, before decoding a Java instance of a certain class is
initialized assuming to know the ASN.1 type of the arriving data. This might
surprise, but it reflects the normal behavior of communicating applications,
since they use to follow some kind of dialog or protocol for performing their
data transactions. That is, they know which kind of data should be arriving at
each state of the communication.

Alternative decoding procedure

The DERDecoder class provides also a readType() method with which a byte
array can be decoded without having to know its ASN.1 type beforehand.

ByteArrayInputStream in =
new ByteArrayInputStream(encodedAsn1Object);

DERDecoder decoder = new DERDecoder(in);
ASN1Type asn1Type = decoder.readType();

12

This method returns an instance of ASN1Type. This is an interface that is
implemented by all classes of the CODEC package that represent an ASN.1 type,
e. g. the ASN1IA5String class. You can store the data of an ASN1Type instance
in a file or print it to the standard output, however if you want to determine the
concrete class of the Java value stored within this instance, you have to check
all possible classes that an ASN1Type can store, e. g. the java.lang.String
class, the java.math.BigInteger class, etc.

ASN1Type asn1Type = decoder.readType();
Object value = asn1Type.getValue();

if (value instanceof String)
{

...
}
else if (value instanceof BigInteger)
{

...
}
else if (value instanceof ArrayList)
{

...
}
else ...

As you can see, it is possible to decode the data this way, but further processing
is quite complicated, since its type is not known.

On the other hand, this decoding procedure can be very useful for testing and
debugging purposes when it is not exactly known in advance what kind of an
application receives.

A complete Java application implementing encoding and decoding as it has been
shown in this chapter can be found in Appendix A (Coding/Decoding Example).

13

Chapter 4

How to implement
SEQUENCE types

The SEQUENCE type models data structures which describe some information
stored in several components that may be of different data types. Such struc-
tures, very common in programming languages, can be used for describing some
object or instance, storing the data about its attributes in the components of
the data structure.

As next you can see an example of an ASN.1 declaration of a SEQUENCE type:

Product ::= SEQUENCE {
product-name IA5String,
product-code IA5String,
price INTEGER,
available-quantity INTEGER }

As you can see, the data structure defined offers a fixed list of components,
each one denoted by an identifier (a name describing the component) and its
corresponding ASN.1 type.

As next it is shows how to implement such a SEQUENCE type in Java using the
CODEC package. Therefore a separate Java class is written that represents
the ASN.1 type. Let us first define a simpler SEQUENCE type with only two
components to avoid the resulting Java code to be too extensive:

Order ::= SEQUENCE {
product-name IA5String,
needed-quantity INTEGER }

In general, every Java class that represents a SEQUENCE type has to extend the
ASN1Sequence class of the codec.asn1 package. The first lines of code are the
following:

import codec.asn1.*;

14

public class Order extends ASN1Sequence
{
...

The next step is to declare member variables that represent the components of
the SEQUENCE type:

private ASN1IA5String productName_ = null;
private ASN1Integer neededQuantity_ = null;

The member variables have to match the Java class that represents the ASN.1
type of the corresponding component in the SEQUENCE declaration.

As next it is shown how the constructorso are implemented . Basically two
different constructorswe have to be written for a class representing an ASN.1
type:

• one with parameters for encoding the data received from the application.

• one without parameters for creating an empty object ready to be filled
with Java values obtained by decoding an ASN.1 encoded bit stream.

It may be the case that for your specific application you only need to implement
one of the constructors for a certain ASN.1 type.

The constructor for encoding

Before we go on let us look a scenario in which the implementation of ASN.1
may be used.

Sales Outlet

Java Client

(sending)

� 1 0 1 1 1 0 1

Encoded ASN.1 data

�

Java Server

(receiving)

Warehouse Central

Let us assume there are two applications running on different machines that
perform the following tasks:

• The client application runs at a sales outlet and sends orders to the ware-
house with the type and quantity of each product that is needed.

• The server application runs at a central warehouse and collects the orders
of the clients which could be programmed in different languages and run
on different operating system.

15

Before two applications can exchange data a set of ASN.1 types has to be de-
clared that defines all possible data structures that may be transmitted. It is up
to each party to choose a programming language and to implement the corre-
sponding code to represent these ASN.1 types (e. g. as Java classes containing
basic Java values such as character strings, integers, etc.) and to provide the
necessary mechanisms for data encoding and decoding according to the ASN.1
coding rules.

The ASN.1 Order type defined above is implemented in a Java class to demon-
strate how data can be transmitted between a client and the warehouse server.
The following lines of code belong to the implementation of the client applica-
tion:

...
// Variables that represent the data to be transmitted.
String productName;
int neededQuantity;
Order order;
...
(Set the variables e. g. by reading a database.)
...
// Create instances of the Order class with the data read
// from the database.
order = new Order(productName, neededQuantity);
...
(Encode the instances just created.)
...
(Transmit the encoded data.)
...

As you can see a Order object is instantiated with two Java values as parameters.
The constructor that is used is the one for data encoding which is implemented
as follows:

16

public Order(String productName, int neededQuantity)
{

/* Allocate memory for the member variables.
*/
super(2);

/* Create ASN.1 objects with the parameters.
*/
productName_ = new ASN1IA5String(productName);
neededQuantity_ = new ASN1Integer(neededQuantity);

/* Add the member variables to this class.
*/
add(productName_);
add(neededQuantity_);

}

First of all lets take a look at the superclasses of the Order class:

java.util.ArrayList
|

codec.asn1.ASN1AbstractCollection
|

codec.asn1.ASN1Sequence
|

Order

As you can see the ASN1Sequence class is a java.util.ArrayList subclass,
i. e. it represents a list of Java objects.

The first instruction of the constructor shown above super(2) calls the super
class constructor and passes the number of member variables as argument, i. e.
the number of components the corresponding ASN.1 type has. According to
this value the adequate initial memory is allocated, in this case for two objects.
The instructions in the following lines initialize the member variables with the
parameter values and add them to the Order object calling the add(Object)
method inherited from the ArrayList class.

Note: We would like to point out that references to Java classes of the CODEC
package should be avoided in the parameter list of a constructor for data en-
coding as in the next example:

public Order(ASN1IA5String productName,
ASN1Integer neededQuantity)

{
...

The disadvantage of such a constructor declaration becomes evident when we
look at a piece of code as shown before:

17

import codec.asn1.*;
...
(Read database and set variables with the data read.)
...
// Create instances of the Order class with the data obtained
// from database.
product = new Order(

new ASN1IA5String(productName1),
new ASN1Integer(neededQuantity1));

...
(Encode the Order instances.)
...
(Transmit the byte arrays containing the encoded data.)
...

As you can see, the CODEC packages have to be imported in the implementation
of the client application and also all application data has to be wrapped in
CODEC classes before they are passed to the constructor. This contradicts
the basic rule that the CODEC packages, as any other package, should only be
imported whenever it is necessary, e. g. in the implementation of the classes
that represent the custom ASN.1 types, but they should stay hidden from the
application developers otherwise.

The constructor for decoding

Now let us look at the server which expects to receive ASN.1 encoded data as
defined by the Order type. The next lines of code show very roughly how such
a server may be implemented:

...
(Listen to input stream for incoming data.)
...
// Byte array to store incoming data.
byte[] encodedAsn1Object;
...
(Store incoming data in byte array.)
...
// Create empty instance of the Order class ready to
// decode the data received.
Order order = new Order();
...
(Decode received data and store decoded values in the
empty Order instance just created. From now on the decoded
data is accessible as basic Java values from the Order
instance.)

The decode(byte[]) method will be explained in detail in the next section.

18

For transforming the data received in usable Java values an empty Order object
is created. With it the data can be decoded and properly stored and accessed.
The next constructor shows how the subclass of ASN1Sequence has to be ini-
tialized to perform this task:

public Order()
{

super(2);

/* Initialize the member variables ready for decoding
* each component of the SEQUENCE.
*/
productName_ = new ASN1IA5String();
neededQuantity_ = new ASN1Integer();

/* Add the member variables to the class.
*/
add(productName_);
add(neededQuantity_);

}

It is almost the same as the constructor for encoding data, only that the member
variables are initialized calling their respective constructors for decoding, i.e.
without parameters.

Note: An important thing to keep in mind is that the member variables have
to be added in both constructors in the same order as the components are
listed in the corresponding ASN.1 type declaration. In the encoding constructor
this determines the order in which the member variables are encoded. In the
decoding constructor it determines the order in which the encoded components
are expected.

Coding/Decoding

Now let us take a detailed look at the encoding/decoding steps. In the previous
pieces of code the actual implementation of the encoding and the decoding
process were ommitted. In the following two methods for this purpose are
shown, getEncoded() and decode(byte[]).

The first method is called at the client side. It reads and encodes the data stored
in the member variables of the object and returns a byte array representing an
encoded Order type value..

public byte[] getEncoded() throws ASN1Exception, IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

/* Initialize an output stream to which the encoded data will

19

* be written.
*/

out = new ByteArrayOutputStream();

/* Initialize encoder instance with this output stream.
*/

encoder = new DEREncoder(out);

/* Encoder reads the data stored in the member variables of
* this class and encodes it writing the output to the output
* stream.
*/

this.encode(encoder);

/* Store the data in the output stream in a byte array. This
* array will be returned by this method.
*/

encodedAsn1Object = out.toByteArray();

/* Close the stream.
*/

encoder.close();

/* Return the encoded data.
*/

return encodedAsn1Object;
}

The decode(byte[]) method takes as argument a byte array representing an
encoded Order type value. The bytes of each component are decoded and stored
in the corresponding member variables of the Order class.

public void decode(byte[] encodedData)
throws ASN1Exception, IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

/* Initialize input stream containing the encoded data.
*/

in = new ByteArrayInputStream(encodedData);

/* Initialize decoder instance with this input stream.
*/

decoder = new DERDecoder(in);

/* Decode the data in the input stream and stored it in the
* member variables of this class that represent the
* components of the corresponding ASN.1 type.

20

*/
this.decode(decoder);

/* Close the stream.
*/

decoder.close();
}

As you can see both methods follow the same steps that were shown in the
previous chapter. The code shown here is quite useful because it works in all
class that implements codec.asn1.ASN1Type, as e.g. any class that extends one
of the ASN.1 standard types shown in table 3.1 in the previous chapter. You
can copy and paste them and they perform the same task correctly, you do not
need to adapt them to your class.

Now let us instantiate the Order class as follows:

Order asn1Object = new Order("Soap", 152);

and take a look to the bytes of the encoded instance:

0x30 0x0a 0x16 0x04 0x53 0x6f 0x61 0x70 0x02 0x02 0x00 0x98
T0 L0 T01 L01 S o a p T02 L02 152

The first byte (0x30) represents the standard ASN.1 type of the Order type:
the SEQUENCE type. The second byte (0x0a, i. e. 10) indicates that 10 bytes
follow representing the contents of the Order structure. The third byte (0x16)
represents the ASN.1 type of the first component: the IA5String type. The
fourth byte (0x04, i. e. 4) represents the length of the value of the first compo-
nent, according to the 4 characters of the string ”Soap”. The nineth and tenth
bytes (0x02, 0x02) represent the ASN.1 type (INTEGER) and the length of the
second component since the last two bytes represent the number 152.

Set and get methods

The set and get methods can be implemented as follows:

public void setProductName(String productName)
{

productName_ = new ASN1IA5String(productName);
set(0, productName_);

}

public String getProductName()
{

return productName_.getString();
}

public void setNeededQuantity(int neededQuantity)

21

{
neededQuantity_ = new ASN1Integer(neededQuantity);
set(1, neededQuantity_);

}

public int getNeededQuantity()
{

return neededQuantity_.getBigInteger().intValue();
}

It has to be taken care in the set methods to set the member variables at the
correct index. As you remember they were added to the class in the constructors
in a certain order, namely in the order that the components were given in the
corresponding ASN.1 declaration (cf. chapter 9).

In the set methods the member variables receive new values that replace the old
values that have been previously included to the list represented by the Order
class. This is done by calling the set(int, Object) method of the super class
java.util.ArrayList.

Set methods are optional. They were introduced them for the sake of complete-
ness. On the other hand get methods are very useful since they make accessible
the data corresponding to each component of the SEQUENCE type.

Note: The parameters of the set methods as well as the return values of the
get methods should be represented by standard Java values and not by CODEC
types since these methods are used by other classes.

You can find the complete sources to this chapter in Appendix B (SEQUENCE
Example).

22

Chapter 5

How to implement
SEQUENCE OF types

The ASN.1 SEQUENCE OF type represents a list of elements of the same type. To
illustrate this type let us use the Order type defined in the last chapter:

Order ::= SEQUENCE {
product-name IA5String,
needed-quantity INTEGER }

It may happen that not only an order for a single product is demanded, but
rather a list of several orders. For this case the definition of a SEQUENCE OF
type is very helpful since it can represent a list of orders with all the quantities
needed. A declaration of such a type is as simple as the following:

OrderList ::= SEQUENCE OF Order

To implement a Java class that represents a SEQUENCE OF type the ASN1SequenceOf
class is extended:

import codec.asn1.*;

public class OrderList extends ASN1SequenceOf
{
...

The implementation of such a class basically requires only the implementation
of one constructor (one without parameters):

public OrderList()
{

super(Order.class);
}

23

It declares what type of elements are stored in this object, here instances of
the Order class. This class refers to the Java implementation of the ASN.1
type of the elements of the ASN1SequenceOf structure. In the source code of
this class (see Appendix C - SEQUENCE OF Example) you can find an additional
constructor which takes an array of Order objects as a parameter.

Methods for encoding and decoding (byte[] getEncoded() and decode(byte[]))
can be implemented exactly as in the previous chapter.

The next lines of code show how an ASN1SequenceOf subclass object may be
initialized and filled with data for encoding:

OrderList orderList = new OrderList();
Order order0 = new Order("Soap", 152);
Order order1 = new Order("Shampoo", 346);
orderList.add(order0);
orderList.add(order1);

The ASN1SequenceOf class is also a subclass of the java.util.ArrayList class
and inherits consequently the add(Object) method, with which elements can
be added to it. Once the ASN1SequenceOf instance is filled with data it can be
encoded and decoded as shown before.

If you want to replace an element with a new value or access a single element you
can use the set(int, Object) and the Object get(int) methods inherited
from the ArrayList class:

Order newOrder1 = new Order("Shampoo", 256);
orderList.set(1, newOrder1);

Order someOrder = (Order)orderList.get(0);

24

Chapter 6

Note about SET and SET
OF types

We do not recommend to define and use SET and SET OF types since they do not
offer a significant functional gain. These types are equal to the SEQUENCE and
SEQUENCE OF types except that the elements they contain do not necessarily have
to be encoded in the order established by the corresponding ASN.1 declaration.

In the CODEC package the implementation of the DER encoding of the corre-
sponding classes ASN1Set and ASN1SetOf is the same as the one of the ASN1Sequence
and ASN1SequenceOf classes, which is not standard compliant. The encoding
of the elements of a SET type object has to be in ascending lexicographic order
(i. e. comparing the DER encodings of the elements bit by bit).

This encoding procedure was not implemented because it requires much more
processing time and storage space because it contradicts the slim and efficient
design of CODEC which encodes all ASN.1 structure sequentially. Sorting would
require storage and comparison of data seqments that can become arbitrary
large.

25

Chapter 7

How to implement
CHOICE types

A CHOICE type provides a list of different alternative data types it may stand for.
It is used for example when a certain information can be modeled in different
ways. The next ASN.1 declaration describes usual payment methods in online
transactions:

Payment-method ::= CHOICE {
debit [0] Debit,
credit-card [1] Credit-card }

Credit-card ::= SEQUENCE {
... }

Debit ::= SEQUENCE {
... }

The meaning of the numbers within brackets will be explained in chapter 10
”How to implement tagging”.

For demonstrating a sample implementation of a Java class that represents a
CHOICE type let us define a simple ASN.1 type:

Response ::= CHOICE {
acknowledgment NULL,
error-code INTEGER }

The corresponding class has to extend the ASN1Choice class, so the first lines
of code are:

import codec.asn1.*;

public class Response extends ASN1Choice
{
...

26

For each possible data type of the CHOICE has to be declared a member variable
of the corresponding class:

private ASN1Null acknowledgment_;
private ASN1Integer errorCode_;

A Java class representing a CHOICE type should only be used for decoding, never
for encoding. When ASN.1 data has to be encoded the data type of the structure
that is encoded is obviously known and we can simply choose this alternative
from the possible data types and use the corresponding Java class. There is
no point in wrapping the data in a CHOICE object since there is not a separate
encoding tag for a CHOICE type. This has also to be taken into account when
the CHOICE type is enclosed in a structured type. In the following an example
is shown.

The constructor for decoding the CHOICE type is implemented as follows:

public Response()
{

/* Allocate memory for storing two objects (for each
* choice).
*/
super(2);

/* Initialize the member variables ready for decoding
* each of the possible choices.
*/
acknowledgment_ = new Acknowledgment();
errorCode_ = new ErrorCode();

/* Store the possible choices.
*/
addType(acknowledgment_);
addType(errorCode_);

}

As in the implementation of a SEQUENCE type the call of the super constructor
(super(2)) just optimizes the initial memory allocation. The number that is
passed represents the number of alternative choices the corresponding CHOICE
type offers. The following calls initialize the member variables and adds them
using the addType(ASN1Type) method inherited from ASN1Choice.

The next lines of code show how encoding and decoding is done for ASN1Choice
subclasses. As it has been said before ASN1Choice subclasses should not be
used for encoding, but an object of one of the possible types should be created
instead. In the following sample code a NULL object is created and encoded:

ASN1Null ack = new ASN1Null();
ByteArrayOutputStream os = new ByteArrayOutputStream();
DEREncoder encoder = new DEREncoder(os);
ack.encode(encoder);
byte[] encodedData = out.toByteArray();

27

Printing the bytes representing the encoded acknowledgment object to the stan-
dard output shows the following bytes which are the encoded representation a
NULL object:

0x05 0x00

Note: An ASN.1 encoded NULL object consists of only two bytes, tag value 5
and length 0. This is an exception of the general TLV principle (cf. chapter 2).

Since it is expected that a Response object is either a NULL or a INTEGER data
structure, these bytes can be decoded with:

Response newAsn1Object = new Response();
ByteArrayInputStream in = new ByteArrayInputStream(encodedData);
DERDecoder decoder = new DERDecoder(in);
newAsn1Object.decode(decoder);

The decode(Decoder) method of the ASN1Choice class checks the different
types of the alternative choices. If one of them matches the ASN.1 type of the
byte array to be decoded, the value is decoded and stored in the corresponding
object.

You can find the complete sources from which the pieces of code shown in this
chapter have been extracted in Appendix D (CHOICE Example).

28

Chapter 8

How to implement
ENUMERATED types

ENUMERATED types are used for declaring a data type which comprise only a
limited number of different values. Let us take a look at the following example:

ResponseStatus ::= ENUMERATED {
successful (0), -- understood request
malformedRequest (1) -- malformed request }

Each possible value is associated with an integer value. Only this value is
encoded, therefore the ENUMERATED type is in principle equal to the INTEGER
type at least in the way the values are encoded; just the tag is different. At the
receiver side the integer value is decoded and interpreted according to the given
ASN.1 type declaration. Within communicating applications the ENUMERATED
type is commonly used for describing the state of a system or for error codes.

Now let us look at the Java implementation of the ResponseStatus type. For
this purpose the ASN1Enumerated class is subclassed:

import codec.asn1.*;

public class ResponseStatus extends ASN1Enumerated
{
...

For each possible value that the ENUMERATED type may represent is a constant
defined:

public static final int SUCCESSFUL = 0;
public static final int MALFORMED_REQUEST = 1;

These values are declared as public and static so that they can not be altered
and not be accessed from any other class.

A constructor for encoding may be implemented as follows:

29

public ResponseStatus(int value)
throws IllegalArgumentException

{
super(value);

if ((value != SUCCESSFUL)
&& (value != MALFORMED_REQUEST))

{
throw new IllegalArgumentException();

}
}

It filters out inappropriate arguments (integers) according to the ASN.1 type
declaration.

The constructor for decoding is implemented as simple as:

public ResponseStatus()
{

super();
}

And finally the get method:

public int getInt()
{

return getBigInteger().intValue();
}

Notice that the ASN1Enumerated class as well as the ASN1Integer class store
their integer value as a java.math.BigInteger objects.

You can find the whole source code in Appendix E (ENUMERATED Example).

30

Chapter 9

How to implement optional
fields

ASN.1 offers the possibility to set components within a SEQUENCE type as op-
tional. Such components are not encoded, if they do not contain any data.
This way the overhead of unnecessary data encoding and transmission can be
avoided, especially when the optional component of the SEQUENCE is itself a
complex ASN.1 type.

The next ASN.1 declaration describes the content of a web form for registration
at an online shop or something similar, in which some fields must be filled out
and others, denoted with the OPTIONAL clause, may be left empty by the user:

Form ::= SEQUENCE {
title [0] IA5String OPTIONAL,
name [1] IA5String,
address [2] IA5String,
phone [3] IA5String,
fax [4] IA5String OPTIONAL,
email [5] IA5String }

The meaning of the numbers within brackets will be explained in the next
chapter.

For the demonstration of a Java implementation of a SEQUENCE type with op-
tional fields let us define a simple ASN.1 type:

Person ::= SEQUENCE {
age INTEGER OPTIONAL,
name IA5String }

As in chapter 4 ”How to implement a SEQUENCE type” the first lines of code are:

31

import codec.asn1.*;

public class Person extends ASN1Sequence
{

private ASN1Integer age_ = null;
private ASN1IA5String name_ = null;
...

Since it may occur that there is no data to be transmitted for the optional
components, two constructors for encoding can be implemented: one setting
values for all fields (including optional ones) and another setting values only for
non-optional fields.

public Person(int age, String name)
{

super(2);
age_ = new ASN1Integer(age);
name_ = new ASN1IA5String(name);

}

public Person(String name)
{

super(1);
name_ = new ASN1IA5String(name);

}

As you can see, the member variables are not added to the class as it has
been shown in chapter 4. If an ASN.1 SEQUENCE contains OPTIONAL elements
we recommend to implement a separate function, like the one shown next, in
which the structure is re-initialized and the components are added right before
encoding.

protected void map()
{

clear();
if (age_ != null)
{

add(age_);
}
add(name_);

}

The clear() function is inherited from the ArrayList class and removes all
the objects that may have been previously added. This method ensures that
the optional member variables are only added to the class, and hence encoded,
if they are not empty.

The map() method has to be called always before encoding. Therefore the
inherited encode(Encoder) method has to be overwritten:

32

public void encode(Encoder enc)
{

map();
super.encode(enc);

}

The constructor for decoding is implemented as follows:

public Person()
{

super(2);

age_ = new ASN1Integer();
age_.setOptional(true);
name_ = new ASN1IA5String();

add(age_);
add(name_);

}

Here all elements of the SEQUENCE type, also the optional ones, are initialized and
added to the class. The member variables representing the optional components
have to be marked as optional using the setOptional(true) method. This
method sets or removes the optional flag. It belongs to ASN1Type, an interface
of the CODEC package that is implemented by all classes that represent an
ASN.1 type.

The decoder always checks this flag before decoding a component of a SEQUENCE
type. If set to true the compontent is optional and the decoder does not throw an
exception if no data was delivered for this component. If set to false the decoder
requires data of the same type as the component to be decoded, otherwise an
exception is thrown. In the flow chart in figure 9.1 you can see in more detail
the steps for the decoding of a component of a SEQUENCE type.

Now let us follow the procedure in a concrete example. Therefore an object of
Person class is created without providing any data for the optional component:

Person asn1Object = new Person("Volker");

ByteArrayOutputStream out = new ByteArrayOutputStream();
DEREncoder encoder = new DEREncoder(out);
byte[] encodedAsn1Object = null;

asn1Object.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close();

33

Read the bytes within the bit stream to be decoded, that

represent the next component of the SEQUENCE object

�

Get the next Java object within the ASN1Sequence instance

�

Was

Java object

set as

optional ?

�
�

��

�
�

��

�
�

��

�
�

��

�

No (which is the default)

�

Yes

Corresponds

data type read in

bit stream with the

data type represented

by the Java

object ?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

No

Corresponds

data type read in

bit stream with the

data type represented

by the Java

object ?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

No

�

Yes

Decode bytes read and

store the decoded data

in the Java object

�

Yes

Decode bytes read and

store the decoded data

in the Java object

�
Error: Bytes read

do not correspond

to the Java object

Figure 9.1: Flow chart representing the decoding of a component within a
SEQUENCE

The encoded bytes of the object just created has the following values:

0x30 0x08 0x16 0x06 0x56 0x6f 0x6c 0x6b 0x65 0x72
T0 L0 T01 L01 V o l k e r

The first two bytes represent the header of the object: the tag for SEQUENCE
types (0x30) and the length of this object (8 bytes). The third byte represents
the ASN.1 type of the second component (IA5String) since the first component
had not been encoded.

For decoding the byte array the following code is used:

Person newAsn1Object = new Person();
ByteArrayInputStream in = new ByteArrayInputStream(encodedData);

34

DERDecoder decoder = new DERDecoder(in);
newAsn1Object.decode(decoder);

The decoder goes through the following steps to decode the bytes:

1. It checks if the first member variable of newAsn1Object (age_) had been
set as optional, which is the case. age_ is the first member variable of
newAsn1Object, because it had been added first to the class in the con-
structor without parameters, which had been called for creating newAsn1Object.

2. The decoder compares the ASN.1 type represented by this member vari-
able (INTEGER) with the ASN.1 type of the first component within the byte
array to be decoded. The ASN.1 type of this component is the IA5String
type, denoted by its tag value (0x16).

3. Since these types do not match and the member variable is optional the
decoder ignores this member variable assuming that no data to be decoded
was provided for it.

4. Then the next member variable is checked if it had been set as optional,
which is not the case.

5. As the ASN.1 type of the second member variable (IA5String) and the
ASN.1 type of the next component to be decoded are the same, the bytes
are decoded and stored in this member variable.

It just remains to show the set and get methods for ASN.1 structures with
optional elements:

protected void setAge(int age)
{

age_ = new ASN1Integer(age);
}

protected int getAge()
{

return age_.getBigInteger().intValue();
}

protected void setName(String name)
{

name_ = new ASN1IA5String(name);
}

protected String getName()
{

return name_.getString();
}

In this case the set methods set(int, Object) of the upper class ArrayList
is not called for replacing the old values with the new one as in chapter 4. In

35

contrast, the new values are added just before encoding using the map() method
as shown before.

The implementation of a function like the following may make sense to remove
a previously set optional component before encoding:

public void removeAge()
{

age_ = null;
}

You can find the whole sources to this chapter in Appendix F (OPTIONAL Fields
Example).

36

Chapter 10

How to implement tagging

Consider the following ASN.1 type declaration:

Person ::= SEQUENCE {
title IA5String OPTIONAL,
name IA5String }

and two possible values for the components of the ASN.1 SEQUENCE:

person1 Person ::= {
title "",
name "Peter" }

person2 Person ::= {
title "Sir",
name "Peter" }

The values of the bytes of the encoded data structures would the following:

person1:

0x30 0x07 0x16 0x05 0x50 0x65 0x74 0x65 0x72

T0 L0 T01 L01 P e t e r

person2:

0x30 0x0c 0x16 0x03 0x53 0x69 0x72 0x16 0x05 0x50 0x65 0x74 0x65 0x72

T0 L0 T01 L01 S i r T02 L02 P e t e r

This would result in a conflict during decoding. As we saw in the last chapter
the decoder decodes the components of a SEQUENCE one after the other. If a
component is optional and the ASN.1 type of the bytes to be decoded next
do not match the ASN.1 type of the optional component, the decoder assumes
that no data was encoded for it. But if the ASN.1 type of the bytes to be
decoded next match the ASN.1 type of the optional component, then the bytes
are decoded and assigned to the optional component.

37

Following this procedure, when decoding the bytes corresponding to person1,
the decoder would wrongly assign the bytes representing the character string
”Peter” to the title component, since both are of the same ASN.1 type.

This is an example for a case where the tagging procedure has to be applied. It
works as follows: the components whose encoded data may be wrongly assigned
to other components at decoding time, have to be marked in the ASN.1 type
declaration with a tag value in square brackets. For example,

Person ::= SEQUENCE {
title [0] IA5String OPTIONAL,
name IA5String }

This way the encoder gives these components a new header with a special tag
value, which is computed using the number in square brackets. The resulting
header is unique within this SEQUENCE. The decoding party, also knowing the
ASN.1 declaration, will be able to assign the encoded data to the corresponding
components, since these can be unambiguously identified with the new headers.

There are two different ways of tagging a component: explicitly and implicitly.
Roughly they differ in that the implicit tagging mode offers a more compact
encoding by simply overwriting the original header while explicit tagging wraps
the original data structure in an additional tagging structure. Explicit tagging
can always be applied whereas we will see later some cases in which implicit
tagging can not be used.

Basically there are two different situations in which tagging has to be used:

• in SEQUENCE types in which there are optional and not optional compo-
nents or only optional components of the same ASN.1 type, for example:

MySequence1 ::= SEQUENCE {
component1 [0] IA5String OPTIONAL,
component2 IA5String }

MySequence2 ::= SEQUENCE {
component1 [0] MySequence3 OPTIONAL,
component2 [1] MySequence4 OPTIONAL }

MySequence3 ::= SEQUENCE {
... }

MySequence4 ::= SEQUENCE {
... }

• in CHOICE types in which some of the choices are of the same ASN.1 type,
e. g.

MyChoice ::= CHOICE {
choice1 [0] MySequence5,
choice2 [1] MySequence6,
choice3 IA5String }

38

Explicit tagging

Explicit tagging is generally the default, i. e. to indicate that this kind of tagging
should be applied just a number between square brackets has to be written
before the ASN.1 type of the component to be tagged, as it has been shown in the
previous examples. Let us take a look at the values of the bytes representing the
previously defined person2 object in encoded form while implementing explicit
tagging:

0x30 0x0e 0xa0 0x05 0x16 0x03 0x53 0x69 0x72 0x16 0x05 0x50 0x65 0x74 0x65 0x72

T0 L0 T01 L01 T011 L011 S i r T02 L02 P e t e r

The first two bytes represent the header of the whole SEQUENCE object. The
following two bytes (0xa0 0x05) represent the new header (tag and length) that
is inserted when components are tagged explicitly. The tag of this header has a
value of 0xa0, i. e. 160. Generally the value of an explicit tag can be computed
as follows:

value of tag = 160 + tag value within square brackets in type declaration

Since the values of the usual ASN.1 tags range from 0 to 30 (each representing
a different standard ASN.1 type), they do not conflict with the values of tagged
components.

The second byte of the new header (0x05) represents the length of the tagged
component, including its own header. That is, the next 5 bytes represent the
tagged component as it would have been transmitted without having it tagged:

... 0x16 0x03 0x53 0x69 0x72 ...

... T011 L011 S i r ...

Implicit tagging

This way of tagging offers a more compact encoding but it cannot always be
applied, e. g. for tagging a component which is a CHOICE type. The reasons
for this will be explained later. To declare that this kind of tagging should be
applied, the keyword "IMPLICIT" is to be inserted in the ASN.1 type declaration
after the numbers within square brackets:

Person ::= SEQUENCE {
title [0] IMPLICIT IA5String OPTIONAL,
name IA5String }

Now let us see how the person2 object defined before would be encoded using
this kind of tagging:

0x30 0x0c 0x80 0x03 0x53 0x69 0x72 0x16 0x05 0x50 0x65 0x74 0x65 0x72

T0 L0 T01 L01 S i r T02 L02 P e t e r

39

As you can see, in this case no new header is added, but the original header of
the tagged component is overwritten with a new one (see bytes 3 and 4). The
decoder has to get the information about the ASN.1 type of this component
from the type declaration. The values of implicit tags are computed as follows:

value of tag = 124 + tag value within square brackets in type declaration

As said before, this way of tagging offers a more compact encoding but it cannot
be applied for tagging CHOICE types. Look at the following example:

MySequence ::= SEQUENCE {
component1 [0] IMPLICIT MyChoice OPTIONAL,
component2 IA5String }

MyChoice ::= CHOICE {
choice1 IA5String,
choice2 UTF8String }

Since the implicit tagging mechanism overwrites the header of the tagged com-
ponent, we can not tell which choice has been set in the CHOICE object at
decoding time. In cases like this explicit tagging has to be used.

Java implementation

Now let us see how the ASN.1 type presented before would be implemented in
Java.

Person ::= SEQUENCE {
title [0] IA5String OPTIONAL,
name IA5String }

In this declaration the first component is explicitly tagged. The first lines are
the same as in a common ASN1Sequence implementation.

import codec.asn1.*;

class Person extends ASN1Sequence
{

ASN1IA5String title_ = null;
ASN1IA5String name_ = null;
...

Constants defining the tag values, i. e. the tag values given in the ASN.1
declaration, are declared:

final int TITLE_TAG = 0;

40

The constructors for encoding data is the same as shown in the last chapter
since here we have also an optional component:

public Person(String title, String name)
{

super(2);
title_ = new ASN1IA5String(title);
name_ = new ASN1IA5String(name);

}

public Person(String name)
{

super(1);
name_ = new ASN1IA5String(name);

}

The member variables are added in the map() function, which always has to be
called before an encoding is performed:

protected void map()
{

clear();
if (title_ != null)
{

add(new ASN1TaggedType(TITLE_TAG, title_, true));
}
add(name_);

}

public void encode(Encoder enc)
{

map();
super.encode(enc);

}

As you can see the member variable representing the tagged component is not
added to the class directly, but enclosed in an instance of the ASN1TaggedType
class. The first argument (TITLE_TAG) represents the tag value given in the
ASN.1 declaration for that component. The second argument (title_) is the
member variable itself, which contains the data to be transmitted and its ASN.1
type. And the third argument denotes the tagging mechanism: explicit or
implicit. The argument given here (true) indicates that explicit tagging is
applied. If the ASN.1 declaration indicated implicit tagging, a false value
would have to be passed here instead.

The constructor for decoding is implemented as follows:

41

public Person()
{

super(2);

title_ = new ASN1IA5String();
name_ = new ASN1IA5String();

add(new ASN1TaggedType(TITLE_TAG, title_, true, true));
add(name_);

}

Here you can see that the ASN1TaggedType instance added to the class is created
calling a different constructor than the one called in the map() function. This
one requires a fourth parameter, a boolean value, that indicates whether the
corresponding tagged component is optional, which is the case in our example.

In the last chapter we showed that in the constructor for decoding, the member
variables representing optional components should be set as optional calling
the setOptional(true) method. Here, this optional flag is set through the
constructor of the ASN1TaggedType class just explained.

During the encoding, this flag does not need to be set. As in the last chapter,
optional components are simply not added to the class and hence not encoded
if they are empty (see map() function).

You can find the whole sources to this chapter in Appendix G (Tagging Exam-
ple).

42

Chapter 11

How to implement default
values

ASN.1 offers the possibility to define default values for components of a SEQUENCE
type.

Client ::= SEQUENCE {
name IA5String,
address IA5String,
country [0] IA5String DEFAULT Germany }

Such components should be encoded only if their value is different than the
default one. This implies that the decoder automatically assumes the default
value if no data was sent for the component.

In general, DEFAULT elements work exactly as OPTIONAL for which a default value
is assumed if they are not there.

Let us see how this feature can be implemented in Java. The first step could be
to define a Java constant for the default value:

String DEFAULT_COUNTRY = "Germany";

Since the country component is explicitly tagged we define a constant for its
new tag:

final int COUNTRY_TAG = 0;

Two constructors for encoding data may be implemented: one setting a value
different than the default and another one assuming the default value for that
component.

public Client(String name, String address, String country)
{

super(3);

43

name_ = new ASN1IA5String(s1);
address_ = new ASN1IA5String(s3);
if (!country.equals(DEFAULT_COUNTRY))
{

country_ = new ASN1IA5String(s2);
}

}

public Client(String name, String address)
{

super(2);
name_ = new ASN1IA5String(name);
address_ = new ASN1IA5String(address);

}

The map() and the encode(Encoder) functions work exactly as with OPTIONAL
components:

protected void map()
{

clear();
add(name_);
add(address_);
if (country_ != null)
{

add(new ASN1TaggedType(COUNTRY_TAG, country_, true));
}

}

public void encode(Encoder enc)
{

map();
super.encode(enc);

}

The constructor for decoding:

public Client()
{

super(3);

name_ = new ASN1IA5String();
address_ = new ASN1IA5String();
country_ = new ASN1IA5String();

add(name_);
add(address_);
add(new ASN1TaggedType(COUNTRY_TAG, country_, true, true));

}

44

Finally the set and get methods for the country component could be imple-
mented as follows:

public setCountry(String country)
{

if (!s2.equals(DEFAULT_COUNTRY))
{

country_ = new ASN1IA5String(country);
}

}

public String getCountry()
{

if (country_ == null)
{

return DEFAULT_COUNTRY;
}
else
{

return country_.getString();
}

}

You can find the whole sources to this chapter in Appendix H (DEFAULT Values
Example).

45

Chapter 12

How to implement ANY
types

The ANY type serves to model a variable whose type is unspecified. It has disap-
peared since 1994 from the ASN.1 standard and its use is strongly inadvisable.
It has been replaced by the introduction of the concepts of parameterization
and the information object class, particularly the TYPE-IDENTIFIER class.

The ANY type was originally meant to be used during the specification design
phase provided that the sender and the receiver had agreed on a few types they
could exchange. It has often been the type of a component within a SEQUENCE
type conditioned by the value of some other component of the same SEQUENCE.
This semantic link could be indicated by the DEFINED BY clause. The next
example shows such a case:

ErrorMessage ::= SEQUENCE {
oid OBJECT IDENTIFIER,
parameter ANY DEFINED BY oid

The component referenced after the DEFINED BY clause had to be of type INTEGER
or OBJECT IDENTIFIER.

Unfortunately ASN.1 provided no way of formally indicating what the possible
values of this semantic link could be. The standard recommended defining an
association list by means of comments within the type declaration. For the type
ErrorMessage above, one could have written

-- oid | ASN.1 type of parameter
-- ====================|=========================
-- 2.1.0.2.0 | NULL
-- 2.1.0.2.2 | INTEGER
-- 1.2.276.1000.8.5.89 | ErrorParameterType1

with ErrorParameterType1

46

ErrorParameterType1 := SEQUENCE {
critical BOOLEAN,
reason IA5String }

The ASN.1 OBJECT IDENTIFIER type represents a list of numbers and it may
classify any kind of objects. It is intended to be used for giving each object which
may be of universal interest a unique value, e. g. for international standards.
In the CODEC package the ASN1ObjectIdentifier class stores its value as a
character string consisting of numbers separated by dots.

The component referenced after the DEFINED BY clause has to always be declared
before the ANY component. This way its value is encoded and decoded first.
This way the specific ASN.1 type of the ANY component can be determined (as
necessary) before it is decoded.

Next we show how to implement the ErrorMessage type. As it represents an
ASN.1 SEQUENCE type it has to extend the ASN1Sequence class.

The member variable representing the ANY component has to be declared as
ASN1Type since it can represent an arbitrary ASN.1 type.

private ASN1ObjectIdentifier oid_ = null;
private ASN1Type parameter_ = null;

Remember that the ASN1Type interface is implemented by all classes of the
CODEC package that represent an ASN.1 type, and hence by all their subclasses.

Next you can see the implementation of the constructor for encoding data:

public ErrorMessage(String oid, Object obj)
{

super(2);

oid_ = new ASN1ObjectIdentifier(oid);

if (oid.equals("2.1.0.2.0"))
{

parameter_ = new ASN1Null();
}
else if (oid.equals("2.1.0.2.2"))
{

parameter_ = new ASN1Integer((BigInteger)obj);
}
else if (oid.equals("1.2.276.1000.8.5.89"))
{

parameter_ = obj;
}

add(oid_);
add(parameter_);

}

47

Here the implementation of the constructor for decoding:

public ErrorMessage()
{

super(2);

oid_ = new ASN1ObjectIdentifier();
parameter_ = new ASN1OpenType(new ErrorResolver(oid_));

add(oid_);
add(parameter_);

}

As you can see the member variable parameter_ is initialized calling an ASN1OpenType
constructor. This class has the capability to decode any class representing an
ASN.1 type. In this case the constructor receives an instance of the ErrorResolver
class as argument.

When modeling ANY DEFINED BY types, the ASN1OpenType class requires as ar-
gument a class that has to implement the Resolver interface. Such a class
actually implements the mapping between the values of the component refer-
enced after the DEFINED BY clause, in our example the component oid, and
the possible ASN.1 types of the ANY type, in the ErrorMessage example, the
component parameter.

As you can see the ErrorResolver instance passed to the ASN1OpenType class
receives itself as argument a reference to the member variable oid_. This refer-
ence will be needed later for decoding the component parameter.

Let us take a look at the implementation of the ErrorResolver class to under-
stand how the ANY DEFINED BY type is decoded.

The class declaration just has to indicate the implementation of the Resolver
interface:

class ErrorResolver implements Resolver
{
...

This class needs a reference to the member variable oid_ of the ErrorMessage
class. The value of this variable determines which Java class the ErrorResolver
class has to provide for decoding the component parameter.

private ASN1ObjectIdentifier oid_ = null;

The reference to this member variable oid_ of the ErrorMessage class is passed
to the ErrorResolver in its constructor which is called in the decoding con-
structor of the ErrorMessage class.

public ErrorResolver(ASN1ObjectIdentifier oid)
{

oid_ = oid;
}

48

Resolver classes have to implement the resolve(ASN1Type)method. It returns
an instance of a class with which the ANY DEFINED BY component, in our case
parameter, should be decoded, depending on the DEFINED BY value, in our
example oid. This method is called from the decode(Decoder) method of the
ASN1OpenType class.

public ASN1Type resolve(ASN1Type caller) throws ResolverException
{

if (oid_.toString().equals("2.1.0.2.0"))
{

return new ASN1Null();
}
else if (oid_.toString().equals("2.1.0.2.2"))
{

return new ASN1Integer();
}
else if (oid_.toString().equals("1.2.276.1000.8.5.89"))
{

return new ErrorParameterType1();
}
else throw new ResolverException();

}

It has to be noticed that, when the ErrorResolver class is constructed, the
member variable oid_ of the ErrorMessage has just been initialized with an
empty default value. However the resolve(ASN1Type) method is called right
before the bytes corresponding to the parameter component are decoded, i. e.
after the component oid has been decoded. At this point the member variable
oid_ has the correct value and the ASN.1 type of the component parameter
can be determined, and therefore it can be decoded.

You can find the whole sources to this chapter in Appendix I (ANY DEFINED BY
Example).

49

Chapter 13

The OID Registry

A registry serves as a mapping of OBJECT IDENTIFIER values to ASN.1 types
for resolving ANY DEFINED BY values.

On one hand, there is a OIDRegistry class In the CODEC package, which per-
mits to add or remove other OIDRegistry instances, so that a tree of registries
can be build. This class serves to represent a top level registry. On the other
hand there is the AbstractOIDRegistry class which provides mechanisms to
look up for a specific ASN.1 type registered in an instance of this class. This
class represents a local registry. If you want to implement your own local registry
class you have to extend this class:

import java.util.Map;

public class SampleOIDRegistry extends AbstractOIDRegistry {
...

The identifiers and the respective ASN.1 types can be then specified as follows:

// Store each OID as an array of integers.
static final private int[][] oids_ =
{

{2,1,0,2,0},
{2,1,0,2,2},
{1,2,276,1000,8,5,89}

};

// The ASN.1 types registered under the OIDs.
static final private Object[] types_ =
{

ASN1Null.class,
ASN1Integer.class,
"ErrorParameterType1"

};

50

This way the new ASN1ObjectIdentifier("2.1.0.2.0") object delivers the
ASN1Null class, etc. As you can see there is also the possibility to add ASN.1
types as character strings (see ”ErrorParameterType1”). You can declare a
prefix indicating the package of the classes given as strings.

static final private String prefix_ = "codec.examples.oidRegistry.";

You also have to declare a variable of the java.util.Map class to store the ids
and the corresponding Java classes representing the ASN.1 types.

static private Map map_ = new HashMap();

The constructor for this class should map the OBJECT IDENTIFIER values and
the corresponding ASN.1 types:

public SampleOIDRegistry(OIDRegistry parent)
{

super(parent);

synchronized(map_)
{

if (map_.size() == 0)
{

for (int i=0; i<types_.length; i++)
{

map_.put(
new ASN1ObjectIdentifier(oids_[i]),
types_[i]);

}
}

}
}

Two more methods have to be implemented by your own registry class:

protected Map getOIDMap()
{

return map_;
}

protected String getPrefix()
{

return prefix_;
}

These methods are called when an ASN.1 type is looked up in this registry,
during the decoding of an ANY DEFINED BY value.

Now let us see how ErrorMessage, the ANY DEFINED BY type defined in the last
chapter, may be implemented using a registry. There is only one change which
is in the implementation of the constructor for decoding:

51

public ErrorMessage()
{

super(2);

code_ = new ASN1ObjectIdentifier();
parameter_ = new ASN1OpenType(new SampleOIDRegistry(), code_);

add(code_);
add(parameter_);

}

This time a SampleOIDRegistry object is passed to the ASN1OpenType con-
structor instead of a Resolver as in the last chapter. The implementation of
this constructor is as follows:

public ASN1OpenType(OIDRegistry registry, ASN1ObjectIdentifier oid)
{

resolver_ = new DefinedByResolver(registry, oid);
}

As we explained in the last chapter an ASN1OpenType instance needs a resolver
that can deliver the appropriate class for decoding the ANY DEFINED BY compo-
nent. In this case the resolver is created instantiating the DefinedByResolver
class with an OIDRegistry. This class belongs to the CODEC package and im-
plements the Resolver interface. It provides an appropriate Java object for
decoding the ANY DEFINED BY component, by querying the registry with which
it is initialized.

You can find the whole sources to this chapter in Appendix J (OIDRegistry
Example).

52

Appendix A

Coding/Decoding Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.simpleExample;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Type;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows how a simple ASN.1 value is created , encoded and decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:05 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)

53

{
ASN1IA5String asn1Object;
ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
ASN1IA5String newAsn1Object;
ByteArrayInputStream in;
DERDecoder decoder;
ASN1Type asn1Type;

/* Create ASN.1 object.

*/

asn1Object = new ASN1IA5String("Hello�World�!");

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encoding process.

*/

/* Initialize an output stream to which the encoded data will be

* written.

*/

out = new ByteArrayOutputStream ();

/* Initialize encoder instance with this output stream.

*/

encoder = new DEREncoder(out);

/* Byte array to store the encoded data.

*/

encodedAsn1Object = null;

try
{

/* Encoder reads the data stored in the variable asn1Object and

* encodes it writing the output to the output stream.

*/

asn1Object.encode(encoder);

/* Store the data in the output stream in a byte array. This array

* will be decoded later.

*/

encodedAsn1Object = out.toByteArray();

54

/* Close the stream.

*/

encoder.close ();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new ASN1IA5String();

/* Initialize input stream containing the encoded data.

*/

in = new ByteArrayInputStream(encodedAsn1Object);

/* Initialize decoder instance with this input stream.

*/

55

decoder = new DERDecoder(in);

try
{

/* Decode the data in the input stream and stored it in

* newAsn1Object.

*/

newAsn1Object.decode(decoder);

/* Close the stream.

*/

decoder.close ();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

/* Alternative decoding procedure without assuming to know the ASN.1

* type to be decoded.

*/

System.out.println("Alternative�decoding�procedure:");

/* Variable to store the data that will be decoded. Its type is not

* determined.

*/

asn1Type = null;

/* Input stream containing the encoded data.

*/

in = new ByteArrayInputStream(encodedAsn1Object);

/* Initialize decoder instance with this input stream.

*/

decoder = new DERDecoder(in);

56

try
{

/* Decoder returns a Java object of the corresponding CODEC class

* and already containing the decoded data.

*/

asn1Type = decoder.readType();
decoder.close ();

}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(asn1Type.toString());
System.out.println();

}
}

57

Appendix B

SEQUENCE Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.sequence;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Sequence;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type.

* <PRE >Order := SEQUENCE {

* product -name IA5String ,

* available -quantity INTEGER }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Order.java ,v 1.2 2004/08/05 13:21:05 pebinger Exp $"

*/

public class Order extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

58

/**

* DOCUMENT ME!

*/

private ASN1IA5String productName_ = null;

/**

* DOCUMENT ME!

*/

private ASN1Integer neededQuantity_ = null;

/**

* Constructor to create an object to be encoded.

*

* @param productName DOCUMENT ME!

* @param neededQuantity DOCUMENT ME!

*/

public Order(String productName , int neededQuantity)
{

/* Allocate memory for the member variables.

*/

super (2);

/* Create ASN.1 objects with the parameters.

*/

productName_ = new ASN1IA5String(productName);
neededQuantity_ = new ASN1Integer(neededQuantity);

/* Add the member variables to this class.

*/

add(productName_);
add(neededQuantity_);

}

/**

* Constructor to create an object ready to decode data.

*/

public Order()
{

super (2);

/* Initialize the member variables ready for decoding each component

* of the SEQUENCE.

*/

productName_ = new ASN1IA5String();
neededQuantity_ = new ASN1Integer();

/* Add the member variables to the class.

*/

add(productName_);

59

add(neededQuantity_);
}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

/* Initialize an output stream to which the encoded data will be

* written.

*/

out = new ByteArrayOutputStream ();

/* Initialize encoder instance with this output stream.

*/

encoder = new DEREncoder(out);

/* Encoder reads the data stored in the member variables of this class

* and encodes it writing the output to the output stream.

*/

this.encode(encoder);

/* Store the data in the output stream in a byte array. This array wil

* be returned by this method.

*/

encodedAsn1Object = out.toByteArray();

/* Close the stream.

*/

encoder.close ();

/* Return the encoded data.

*/

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

60

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

/* Initialize input stream containing the encoded data.

*/

in = new ByteArrayInputStream(encodedData);

/* Initialize decoder instance with this input stream.

*/

decoder = new DERDecoder(in);

/* Decode the data in the input stream and stored it in the member

* variables of this class that represent the components of the

* corresponding ASN.1 type.

*/

this.decode(decoder);

/* Close the stream.

*/

decoder.close ();
}

/**

* Set and get methods.

*

* @param productName DOCUMENT ME!

*/

public void setProductName(String productName)
{

productName_ = new ASN1IA5String(productName);
set(0, productName_);

}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getProductName()
{

return productName_.getString();
}

61

/**

* DOCUMENT ME!

*

* @param neededQuantity DOCUMENT ME!

*/

public void setNeededQuantity(int neededQuantity)
{

neededQuantity_ = new ASN1Integer(neededQuantity);
set(1, neededQuantity_);

}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public int getNeededQuantity()
{

return neededQuantity_. getBigInteger().intValue();
}

}

62

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.sequence;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 SEQUENCE value is created , encoded and

* decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:05 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

Order asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
Order newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new Order("Soap", 152);

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

63

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Order ();

/* Decode the data stored in the byte array encodedAsn1Object and stor

* it in newAsn1Object.

*/

try
{

64

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

65

Appendix C

SEQUENCE OF Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.sequenceOf;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1SequenceOf;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of the ASN.1 SEQUENCE OF type.

* <PRE >OrderList := SEQUENCE OF Order </PRE >

*

* @author Alberto Sierra

* @version "$Id: OrderList.java ,v 1.2 2004/08/05 13:21:05 pebinger Exp $"

*/

public class OrderList extends ASN1SequenceOf
{

/**

* Constructor to create an object either be encoded or to decode data.

* If used for encoding , elements containing the data have to be added

* to the object created by calling this constructor.

*/

public OrderList()

66

{
super(Order.class);

}

/**

* Constructor to create an object to be encoded. The data is provided by

* the array given as a parameter.

*

* @param orderArray DOCUMENT ME!

*/

public OrderList(Order[] orderArray)
{

super(Order.class , orderArray.length);

/* Add the elements of the array to this class.

*/

for (int i = 0; i < orderArray.length; i++)
{

add(orderArray[i]);
}

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

67

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}
}

68

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.sequenceOf;

import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Sequence;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type.

* <PRE >Order := SEQUENCE {

* product -name IA5String ,

* available -quantity INTEGER }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Order.java ,v 1.2 2004/08/05 13:21:05 pebinger Exp $"

*/

public class Order extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1IA5String productName_ = null;

/**

* DOCUMENT ME!

*/

private ASN1Integer neededQuantity_ = null;

/**

* Constructor for creating an object to be encoded.

*

* @param productName DOCUMENT ME!

* @param neededQuantity DOCUMENT ME!

*/

public Order(String productName , int neededQuantity)
{

super (2);

productName_ = new ASN1IA5String(productName);
neededQuantity_ = new ASN1Integer(neededQuantity);

69

add(productName_);
add(neededQuantity_);

}

/**

* Constructor to create an object ready to decode data.

*/

public Order()
{

super (2);

productName_ = new ASN1IA5String();
neededQuantity_ = new ASN1Integer();

add(productName_);
add(neededQuantity_);

}
}

70

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.sequenceOf;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 SEQUENCE OF value is created , encoded and

* decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:04 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

OrderList asn1Object;
Order order0;
Order order1;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
OrderList newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new OrderList();

order0 = new Order("Soap", 152);
order1 = new Order("Shampoo", 298);

asn1Object.add(order0);
asn1Object.add(order1);

/* Print the ASN.1 object to the standard output.

71

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

72

newAsn1Object = new OrderList();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

73

Appendix D

CHOICE Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.choice;

import codec.asn1.ASN1Choice;
import codec.asn1.ASN1Exception;
import codec.asn1.DERDecoder;

import java.io.ByteArrayInputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 CHOICE type.

* <PRE >Response ::= CHOICE {

* acknoledgment_ Acknoledgement ,

* errorCode_ ErrorCode }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Response.java ,v 1.2 2004/08/05 13:07:32 pebinger Exp $"

*/

public class Response extends ASN1Choice
{

/* Member variables representing each possible choice.

*/

/**

* DOCUMENT ME!

*/

74

private Acknowledgment acknoledgment_ = null;

/**

* DOCUMENT ME!

*/

private ErrorCode errorCode_ = null;

/**

* Constructor for decoding.

*/

public Response()
{

/* Allocate memory for storing two objects (for each choice).

*/

super (2);

/* Initialize the member variables ready for decoding each of the

* possible choices.

*/

acknoledgment_ = new Acknowledgment();
errorCode_ = new ErrorCode();

/* Store the possible choices.

*/

addType(acknoledgment_);
addType(errorCode_);

}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}
}

75

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.choice;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1Null;
import codec.asn1.DEREncoder;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class represents an acknowledgment modelled by an ASN.1 NULL object.

* <PRE >Acknowledgment ::= NULL </PRE >

*

* @author Alberto Sierra

* @version "$Id: Acknowledgment.java ,v 1.16 2004/08/05 13:07:32 pebinger Exp

*/

public class Acknowledgment extends ASN1Null
{

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

}

76

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.choice;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1Integer;
import codec.asn1.DEREncoder;

import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class represents an error code value modelled by an ASN.1 INTEGER

* object.

* <PRE >ErrorCode ::= INTEGER </PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorCode.java ,v 1.2 2004/08/05 13:07:32 pebinger Exp $"

*/

public class ErrorCode extends ASN1Integer
{

/**

* Constructor for encoding.

*

* @param value DOCUMENT ME!

*/

public ErrorCode(int value)
{

super(value);
}

/**

* Constructor for decoding.

*/

public ErrorCode()
{

super ();
}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

77

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

}

78

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with the terms of the licens

* agreement you entered into with Fraunhofer Gesellschaft.

*/

package codec.examples.choice;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 CHOICE value is created , encoded and decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:07:32 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*/

public static void main(String [] args)
{

Acknowledgment asn1Object1;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
Response newAsn1Object;
ErrorCode asn1Object2;

/* Create ASN.1 object.

*/

asn1Object1 = new Acknowledgment();

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object1.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;

79

try
{

encodedAsn1Object = asn1Object1.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Response();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);

80

}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println("New�ASN.1�object�got�by�decoding�the�previous�byte
System.out.println(newAsn1Object.toString());
System.out.println();

/* **

Repeat process with the other possible data type valid for the CHOICE

/***

/* Create ASN.1 object.

*/

asn1Object2 = new ErrorCode(1);

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object2.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object2.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

81

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Bytes�representing�the�encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Response();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

82

*/

System.out.println("New�ASN.1�object�got�by�decoding�the�previous�data
System.out.println(newAsn1Object.toString());
System.out.println();

}

}

83

Appendix E

ENUMERATED Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.enumerated;

import codec.asn1.ASN1Enumerated;
import codec.asn1.ASN1Exception;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 ENUMERATED type.

* <PRE >ResponseStatus ::= ENUMERATED {

* successful (0), -- understood request

* malformedRequest (1) -- malformed request }</PRE >

*

* @author Alberto Sierra

* @version "$Id: ResponseStatus.java ,v 1.2 2004/08/05 13:21:04 pebinger Exp $

*/

public class ResponseStatus extends ASN1Enumerated
{

/* Constants representing each possible value.

*/

/**

84

* DOCUMENT ME!

*/

public static final int SUCCESSFUL = 0;

/**

* DOCUMENT ME!

*/

public static final int MALFORMED_REQUEST = 1;

/**

* Constructor for encoding.

*

* @param value DOCUMENT ME!

*

* @throws IllegalArgumentException DOCUMENT ME!

*/

public ResponseStatus(int value) throws IllegalArgumentException
{

super(value);

if ((value != SUCCESSFUL) && (value != MALFORMED_REQUEST))
{

throw new IllegalArgumentException ();
}

}

/**

* Constructor for decoding.

*/

public ResponseStatus()
{

super ();
}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

85

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Returns the value stored.

*

* @return DOCUMENT ME!

*/

public int getInt ()
{

return getBigInteger().intValue();
}

}

86

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.enumerated;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 ENUMERATED value is created , encoded and

* decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:04 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

ResponseStatus asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
ResponseStatus newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new ResponseStatus(1);

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

87

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new ResponseStatus();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);

88

}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

89

Appendix F

OPTIONAL Fields
Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.optionalFields;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Sequence;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;
import codec.asn1.Encoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type with an

* OPTIONAL component.

* <PRE >Person := SEQUENCE {

* age INTEGER OPTIONAL ,

* name IA5String }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Person.java ,v 1.3 2004/08/05 13:21:04 pebinger Exp $"

90

*/

public class Person extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1Integer age_ = null;

/**

* DOCUMENT ME!

*/

private ASN1IA5String name_ = null;

/**

* Constructor for encoding setting a value for the optional field.

*

* @param age DOCUMENT ME!

* @param name DOCUMENT ME!

*/

public Person(int age , String name)
{

super (2);

age_ = new ASN1Integer(age);
name_ = new ASN1IA5String(name);

}

/**

* Constructor for encoding leaving optional field empty.

*

* @param name DOCUMENT ME!

*/

public Person(String name)
{

super (1);

name_ = new ASN1IA5String(name);
}

/**

* Constructor for decoding.

*/

public Person ()
{

super (2);

age_ = new ASN1Integer();

91

age_.setOptional(true);
name_ = new ASN1IA5String();

add(age_);
add(name_);

}

/**

* Add only the components that will be encoded to class.

*/

protected void map()
{

clear ();
if (age_ != null)
{

add(age_);
}
add(name_);

}

/**

* Override the encode(Encoder) method so that map() is called before

* each call of this method.

*

* @param enc DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void encode(Encoder enc) throws ASN1Exception , IOException
{

map();
super.encode(enc);

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();

92

encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Set and get methods.

*

* @param age DOCUMENT ME!

*/

public void setAge(int age)
{

age_ = new ASN1Integer(age);
age_.setOptional(false);

}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public int getAge ()
{

return age_.getBigInteger().intValue();

93

}

/**

* DOCUMENT ME!

*

* @param name DOCUMENT ME!

*/

public void setName(String name)
{

name_ = new ASN1IA5String(name);
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getName()
{

return name_.getString();
}

/* Remove the value of the optional field.

*/

public void removeAge()
{

age_ = null;
}

/**

* Override the toString() method so that map() is called before each

* call of this method.

*

* @return DOCUMENT ME!

*/

public String toString()
{

map();
return super.toString();

}
}

94

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with the terms of the licens

* agreement you entered into with Fraunhofer Gesellschaft.

*/

package codec.examples.optionalFields;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 SEQUENCE value with optional fields is

* created , encoded and decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:04 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args

*/

public static void main(String [] args)
{

Person asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
Person newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new Person (30, "Volker");

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

95

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Person ();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

96

*/

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println("New�ASN.1�object�got�by�decoding�the�previous�byte
System.out.println(newAsn1Object.toString());
System.out.println();

/* **

Repeat process without encoding optional component.

/***

/* Create ASN.1 object.

*/

asn1Object = new Person("Volker");

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)

97

{
System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Bytes�representing�the�encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Person ();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

98

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println("New�ASN.1�object�got�by�decoding�the�previous�data
System.out.println(newAsn1Object.toString());
System.out.println();

}

}

99

Appendix G

Tagging Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.tagging;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Sequence;
import codec.asn1.ASN1TaggedType;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;
import codec.asn1.Encoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type with a

* tagged component.

* <PRE >Person := SEQUENCE {

* title [0] IA5string OPTIONAL ,

* name IA5string }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Person.java ,v 1.3 2004/08/05 13:21:04 pebinger Exp $"

*/

public class Person extends ASN1Sequence
{

100

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1IA5String title_ = null;

/**

* DOCUMENT ME!

*/

private ASN1IA5String name_ = null;

/**

* Constant representing the tag value of title.

*/

final int TITLE_TAG = 0;

/**

* Constructor for encoding setting a value for the optional field.

*

* @param title DOCUMENT ME!

* @param name DOCUMENT ME!

*/

public Person(String title , String name)
{

super (2);

title_ = new ASN1IA5String(title);
name_ = new ASN1IA5String(name);

}

/**

* Constructor for encoding leaving optional field empty.

*

* @param name DOCUMENT ME!

*/

public Person(String name)
{

super (1);

name_ = new ASN1IA5String(name);
}

/**

* Constructor for decoding.

*/

public Person ()
{

super (2);

101

title_ = new ASN1IA5String();
name_ = new ASN1IA5String();

add(new ASN1TaggedType(TITLE_TAG , title_ , true , true));
add(name_);

}

/**

* Add only the components that will be encoded to class.

*/

protected void map()
{

clear ();
if (title_ != null)
{

add(new ASN1TaggedType(TITLE_TAG , title_, true));
}
add(name_);

}

/**

* Override the encode(Encoder) method so that map() is called before

* each call of this method.

*

* @param enc DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void encode(Encoder enc) throws ASN1Exception , IOException
{

map();
super.encode(enc);

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

102

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Set and get methods.

*

* @param title DOCUMENT ME!

*/

public void setTitle(String title)
{

title_ = new ASN1IA5String(title);
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getTitle()
{

return title_.getString();

103

}

/**

* DOCUMENT ME!

*

* @param name DOCUMENT ME!

*/

public void setName(String name)
{

name_ = new ASN1IA5String(name);
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getName()
{

return name_.getString();
}

/**

* Remove the value of the optional field.

*/

public void removeTitle()
{

title_ = null;
}

/**

* Override the toString() method so that map() is called before each

* call of this method.

*

* @return DOCUMENT ME!

*/

public String toString()
{

map();
return super.toString();

}
}

104

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.tagging;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how a SEQUENCE value with tagged fields is created ,

* encoded and decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:04 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

Person asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
Person newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new Person("Sir", "Peter");

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

105

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Person ();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);

106

}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

107

Appendix H

DEFAULT Values Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.defaultValues;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Sequence;
import codec.asn1.ASN1TaggedType;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;
import codec.asn1.Encoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type with a

* DEFAULT value for a component.

* <PRE >Payment ::= SEQUENCE {

* quantity INTEGER ,

* currency IA5String DEFAULT Euro }</PRE >

*

* @author Alberto Sierra

* @version "$Id: Payment.java ,v 1.3 2004/08/05 13:19:27 pebinger Exp $"

*/

public class Payment extends ASN1Sequence

108

{
/**

* Member variable representing the quantity field of the ASN.1 SEQUENCE.

*/

private ASN1Integer quantity_ = null;

/**

* Member variable representing the currency field of the ASN.1 SEQUENCE.

*/

private ASN1IA5String currency_ = null;

/**

* Constant for the default currency.

*/

private final String DEFAULT_CURRENCY = "Euro";

/**

* Constant for the currency tag.

*/

private final int CURRENCY_TAG = 0;

/**

* Constructor for encoding , setting a value different than the default.

*

* @param quantity DOCUMENT ME!

* @param currency DOCUMENT ME!

*/

public Payment(int quantity , String currency)
{

super (2);

quantity_ = new ASN1Integer(quantity);
if (! currency.equals(DEFAULT_CURRENCY))
{

currency_ = new ASN1IA5String(currency);
}

}

/**

* Constructor for encoding , assuming the default value.

*

* @param quantity DOCUMENT ME!

*/

public Payment(int quantity)
{

super (1);

quantity_ = new ASN1Integer(quantity);
}

109

/**

* Constructor for decoding.

*/

public Payment()
{

super (3);

quantity_ = new ASN1Integer();
currency_ = new ASN1IA5String();

add(quantity_);
add(new ASN1TaggedType(CURRENCY_TAG , currency_ , true , true));

}

/**

* Add only the components that will be encoded to class.

*/

protected void map()
{

clear ();
add(quantity_);
if (currency_ != null)
{

add(new ASN1TaggedType(CURRENCY_TAG , currency_ , true));
}

}

/**

* Override the encode(Encoder) method so that map() is called before

* each call of this method.

*

* @param enc DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void encode(Encoder enc) throws ASN1Exception , IOException
{

map();
super.encode(enc);

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

110

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Set and get methods.

*

* @param quantity DOCUMENT ME!

*/

public void setQuantity(int quantity)
{

quantity_ = new ASN1Integer(quantity);
}

/**

* DOCUMENT ME!

111

*

* @return DOCUMENT ME!

*/

public int getQuantity()
{

return quantity_.getBigInteger().intValue();
}

/**

* DOCUMENT ME!

*

* @param currency DOCUMENT ME!

*/

public void setCurrency(String currency)
{

if (! currency.equals(DEFAULT_CURRENCY))
{

currency_ = new ASN1IA5String(currency);
}

}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getCurrency()
{

if (currency_ == null)
{

return DEFAULT_CURRENCY;
}
else
{

return currency_.getString();
}

}

/**

* Override the toString() method so that the default value is printed.

*

* @return DOCUMENT ME!

*/

public String toString()
{

if (currency_ == null)
{

currency_ = new ASN1IA5String(DEFAULT_CURRENCY);
map();
currency_ = null;

112

return super.toString();
}
else
{

if (currency_.getString() == "")
{

currency_ = new ASN1IA5String(DEFAULT_CURRENCY);
map();
currency_ = new ASN1IA5String();
return super.toString();

}
else
{

map();
return super.toString();

}
}

}
}

113

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.defaultValues;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 SEQUENCE value with default values is

* created , encoded and decoded.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:09:09 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

Payment asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
Payment newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object = new Payment(100);

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

114

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new Payment();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

try
{

newAsn1Object.decode(encodedAsn1Object);

115

}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

116

Appendix I

ANY DEFINED BY
Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.anyDefinedBy;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Null;
import codec.asn1.ASN1ObjectIdentifier;
import codec.asn1.ASN1OpenType;
import codec.asn1.ASN1Sequence;
import codec.asn1.ASN1Type;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

import java.math.BigInteger;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type with an

* ANY DEFINED BY field.

* <PRE >

* ErrorMessage := SEQUENCE {

117

* oid OBJECT IDENTIFIER ,

* parameter ANY DEFINED BY oid

*

* -- oid | ASN.1 type of parameter

* -- ==========|=========================

* -- 2.1.0.2.0 | NULL

* -- 2.1.0.2.2 | INTEGER

* -- 1.2.3.4.5 | ErrorParameterType1 }</PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorMessage.java ,v 1.2 2004/08/05 13:07:18 pebinger Exp $"

*/

public class ErrorMessage extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1ObjectIdentifier oid_ = null;

/**

* DOCUMENT ME!

*/

private ASN1Type parameter_ = null;

/**

* Constructor for encoding.

*

* @param oid DOCUMENT ME!

* @param obj DOCUMENT ME!

*/

public ErrorMessage(String oid , Object obj)
{

super (2);

oid_ = new ASN1ObjectIdentifier(oid);

if (oid.equals("2.1.0.2.0"))
{

parameter_ = new ASN1Null();
}
else if (oid.equals("2.1.0.2.2"))
{

parameter_ = new ASN1Integer((BigInteger)obj);
}
else if (oid.equals("1.2.3.4.5"))
{

parameter_ = (ASN1Type)obj;

118

}

add(oid_);
add(parameter_);

}

/**

* Constructor for decoding.

*/

public ErrorMessage()
{

super (2);

oid_ = new ASN1ObjectIdentifier();
parameter_ = new ASN1OpenType(new ErrorResolver(oid_));

add(oid_);
add(parameter_);

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

119

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Get methods.

*

* @return DOCUMENT ME!

*/

public String getOID ()
{

return oid_.toString();
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public ASN1Type getParameter()
{

return parameter_;
}

}

120

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.anyDefinedBy;

import codec.asn1.ASN1Boolean;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Sequence;

/**

* This class represents an error parameter type modelled by an ASN.1 SEQUENCE

* <PRE >ErrorParameterType1 := SEQUENCE {

* critical BOOLEAN ,

* info IA5String }</PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorParameterType1.java ,v 1.2 2004/08/05 13:07:18 pebinger

*/

public class ErrorParameterType1 extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1Boolean critical_ = null;

/**

* DOCUMENT ME!

*/

private ASN1IA5String info_ = null;

/**

* Constructor for encoding.

*

* @param critical DOCUMENT ME!

* @param info DOCUMENT ME!

*/

public ErrorParameterType1(boolean critical , String info)
{

super (2);

critical_ = new ASN1Boolean(critical);
info_ = new ASN1IA5String(info);

121

add(critical_);
add(info_);

}

/**

* Constructor for decoding.

*/

public ErrorParameterType1()
{

super (2);

critical_ = new ASN1Boolean();
info_ = new ASN1IA5String();

add(critical_);
add(info_);

}

/**

* Get methods.

*

* @return DOCUMENT ME!

*/

public boolean getCritical()
{

return critical_.isTrue ();
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getInfo()
{

return info_.getString();
}

}

122

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.anyDefinedBy;

import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Null;
import codec.asn1.ASN1ObjectIdentifier;
import codec.asn1.ASN1Type;
import codec.asn1.Resolver;
import codec.asn1.ResolverException;

/**

* This class shows a sample implementation of a Resolver class. The

* resolve(ASN1Type) method of this class will return an ASN1Type object for

* decoding an ANY DEFINED BY value. The ASN.1 type retuned will depend on

* the value of an OBJECT IDENTIFIER object according to the following

* table:

* <PRE >

* -- oid | ASN.1 type of parameter

* -- ==========|=========================

* -- 2.1.0.2.0 | NULL

* -- 2.1.0.2.2 | INTEGER

* -- 1.2.3.4.5 | ErrorParameterType1 </PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorResolver.java ,v 1.2 2004/08/05 13:07:18 pebinger Exp $"

*/

public class ErrorResolver implements Resolver
{

/* Reference to the object identifier instance whose value determines whic

* ASN.1 type has to be returned by the resolve(ASN1Type) method of this

* class.

*/

/**

* DOCUMENT ME!

*/

private ASN1ObjectIdentifier oid_;

/**

* Constructor.

*

* @param oid The reference to the object identifier whose value will

* determine the ASN.1 type of the ANY DEFINED BY value. At this

123

* time the object identifier is empty.

*/

public ErrorResolver(ASN1ObjectIdentifier oid)
{

oid_ = oid;
}

/**

* This method returns an empty instance of the appropriate ASN.1 type

* for decoding the ANY DEFINED BY value. When this method is called the

* OBJECT IDENTIFIER pointed by oid_ has been decoded in the meantime ,

* so that its value can be queried.

*

* @param caller The instance from which this method will be called ,

* usually an ASN1OpenType instance (see decode(Decoder) in the

* source of ASN1OpenType).

*

* @return DOCUMENT ME!

*

* @throws ResolverException DOCUMENT ME!

*/

public ASN1Type resolve(ASN1Type caller) throws ResolverException
{

if (oid_.toString().equals("2.1.0.2.0"))
{

return new ASN1Null();
}
else if (oid_.toString().equals("2.1.0.2.2"))
{

return new ASN1Integer();
}
else if (oid_.toString().equals("1.2.3.4.5"))
{

return new ErrorParameterType1();
}
else
{

throw new ResolverException();
}

}
}

124

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.anyDefinedBy;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 object implmenting an ANY DEFINED BY type is

* created , encoded and decoded with the help of a Resolver.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.5 2004/08/19 16:41:29 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

ErrorMessage asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
ErrorMessage newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object =
new ErrorMessage(

"1.2.3.4.5",
new ErrorParameterType1(true , "Error"));

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

125

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new ErrorMessage();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

126

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

127

Appendix J

OIDRegistry Example

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.oidRegistry;

import codec.asn1.ASN1Exception;
import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Null;
import codec.asn1.ASN1ObjectIdentifier;
import codec.asn1.ASN1OpenType;
import codec.asn1.ASN1Sequence;
import codec.asn1.ASN1Type;
import codec.asn1.DERDecoder;
import codec.asn1.DEREncoder;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;

import java.math.BigInteger;

/**

* This class shows a sample implementation of an ASN.1 SEQUENCE type with an

* ANY DEFINED BY field.

* <PRE >ErrorMessage := SEQUENCE {

* oid OBJECT IDENTIFIER ,

* parameter ANY DEFINED BY oid

*

* -- oid | ASN.1 type of parameter

128

* -- ==========|=========================

* -- 2.1.0.2.0 | NULL

* -- 2.1.0.2.2 | INTEGER

* -- 1.2.3.4.5 | ErrorParameterType1 }</PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorMessage.java ,v 1.2 2004/08/05 13:21:04 pebinger Exp $"

*/

public class ErrorMessage extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1ObjectIdentifier oid_ = null;

/**

* DOCUMENT ME!

*/

private ASN1Type parameter_ = null;

/**

* Constructor for encoding.

*

* @param oid DOCUMENT ME!

* @param obj DOCUMENT ME!

*/

public ErrorMessage(String oid , Object obj)
{

super (2);

oid_ = new ASN1ObjectIdentifier(oid);

if (oid.equals("2.1.0.2.0"))
{

parameter_ = new ASN1Null();
}
else if (oid.equals("2.1.0.2.2"))
{

parameter_ = new ASN1Integer((BigInteger)obj);
}
else if (oid.equals("1.2.3.4.5"))
{

parameter_ = (ASN1Type)obj;
}

add(oid_);
add(parameter_);

129

}

/**

* Constructor for decoding.

*/

public ErrorMessage()
{

super (2);

oid_ = new ASN1ObjectIdentifier();
parameter_ = new ASN1OpenType(new SampleOIDRegistry(), oid_);

add(oid_);
add(parameter_);

}

/**

* Returns a byte array representing an encoded instance of this class.

*

* @return DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

public byte[] getEncoded() throws ASN1Exception , IOException
{

ByteArrayOutputStream out;
DEREncoder encoder;
byte[] encodedAsn1Object;

out = new ByteArrayOutputStream ();
encoder = new DEREncoder(out);

this.encode(encoder);
encodedAsn1Object = out.toByteArray();
encoder.close ();

return encodedAsn1Object;
}

/**

* Decodes the byte array passed as argument. The decoded values are

* stored in the member variables of this class that represent the

* components of the corresponding ASN.1 type.

*

* @param encodedData DOCUMENT ME!

*

* @throws ASN1Exception DOCUMENT ME!

* @throws IOException DOCUMENT ME!

*/

130

public void decode(byte[] encodedData) throws ASN1Exception , IOException
{

ByteArrayInputStream in;
DERDecoder decoder;

in = new ByteArrayInputStream(encodedData);
decoder = new DERDecoder(in);

this.decode(decoder);
decoder.close ();

}

/**

* Get methods.

*

* @return DOCUMENT ME!

*/

public String getOID ()
{

return oid_.toString();
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public ASN1Type getParameter()
{

return parameter_;
}

}

131

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.oidRegistry;

import codec.asn1.ASN1Boolean;
import codec.asn1.ASN1IA5String;
import codec.asn1.ASN1Sequence;

/**

* This class represents an error parameter type modelled by an ASN.1 SEQUENCE

* <PRE >ErrorParameterType1 := SEQUENCE {

* critical BOOLEAN ,

* info IA5String }</PRE >

*

* @author Alberto Sierra

* @version "$Id: ErrorParameterType1.java ,v 1.2 2004/08/05 13:21:04 pebinger

*/

public class ErrorParameterType1 extends ASN1Sequence
{

/* Member variables representing the components of the SEQUENCE.

*/

/**

* DOCUMENT ME!

*/

private ASN1Boolean critical_ = null;

/**

* DOCUMENT ME!

*/

private ASN1IA5String info_ = null;

/**

* Constructor for encoding.

*

* @param critical DOCUMENT ME!

* @param info DOCUMENT ME!

*/

public ErrorParameterType1(boolean critical , String info)
{

super (2);

critical_ = new ASN1Boolean(critical);
info_ = new ASN1IA5String(info);

132

add(critical_);
add(info_);

}

/**

* Constructor for decoding.

*/

public ErrorParameterType1()
{

super (2);

critical_ = new ASN1Boolean();
info_ = new ASN1IA5String();

add(critical_);
add(info_);

}

/**

* Get methods.

*

* @return DOCUMENT ME!

*/

public boolean getCritical()
{

return critical_.isTrue ();
}

/**

* DOCUMENT ME!

*

* @return DOCUMENT ME!

*/

public String getInfo()
{

return info_.getString();
}

}

133

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.oidRegistry;

import codec.asn1.ASN1Integer;
import codec.asn1.ASN1Null;
import codec.asn1.ASN1ObjectIdentifier;
import codec.asn1.AbstractOIDRegistry;
import codec.asn1.OIDRegistry;

import java.util.HashMap;
import java.util.Map;

/**

* This class maps ASN.1 object identifiers onto ASN.1 types suitable for

* decoding the structure defined by the given OID.

*

* @author Alberto Sierra

* @version "$Id: SampleOIDRegistry.java ,v 1.2 2004/08/05 13:21:04 pebinger Ex

*/

public class SampleOIDRegistry extends AbstractOIDRegistry
{

/* The OIDs specified as arrays of integers.

*/

/**

* DOCUMENT ME!

*/

private static final int[][] OIDS_ =
{

{ 2, 1, 0, 2, 0 },
{ 2, 1, 0, 2, 2 },
{ 1, 2, 3, 4, 5 }

};

/* The ASN.1 types registered under the OIDs. You can indicate the classes

* as Class objects as well as character strings.

*/

/**

* DOCUMENT ME!

*/

private static final Object [] TYPES_ =

134

{ ASN1Null.class , ASN1Integer.class , "ErrorParameterType1" };

/**

* If you have many classes within the previous array "types_", which

* were given as character strings and which are located in the same

* package , you can save yourself to mention the name of the package for

* each class name and give it here.

*/

/**

* DOCUMENT ME!

*/

private static final String PREFIX_ = "codec.examples.oidRegistry.";

/**

* The mapping from OID to ASN.1 types implementing encoding and decoding

* of the ASN.1 structure registered under the given OID.

*

* <p>

* This field is initialised on the first call to method {@link

* #getOIDMap getOIDMap()}.

* </p>

*/

/**

* DOCUMENT ME!

*/

private static Map map_ = new HashMap();

/**

* The default registry. This instance calls the global registry if a

* requested OID could not be found locally.

*/

private static SampleOIDRegistry default_ =
new SampleOIDRegistry(OIDRegistry.getGlobalOIDRegistry ());

/**

* Creates an instance of this class with no parent.

*/

public SampleOIDRegistry()
{

this(null);
}

/**

* Creates an instance with the given parent.

*

* @param parent the parent OID registry.

*/

public SampleOIDRegistry(OIDRegistry parent)
{

super(parent);

135

synchronized (map_)
{

if (map_.size() == 0)
{

for (int i = 0; i < TYPES_.length; i++)
{

map_.put(new ASN1ObjectIdentifier(OIDS_[i]), TYPES_[i]);
}

}
}

}

/**

* This method returns the default OID registry. The default registry

* delegates to the global OID registry if a requested OID could not be

* found locally.

*

* @return The default OID registry.

*/

public static OIDRegistry getDefaultRegistry()
{

return default_;
}

/**

* Returns the mapping from OID to ASN.1 types. Types are given initially

* as a string representing the postfix of the class name implementing

* the type. This string is replaced by the super class by the

* corresponding class object when that type is first referenced.

*

* <p>

* There must be at least as many OID in the {@link #oids_ oids_} array

* as elements in the {@link #types_ types_} array.

* </p>

*

* @return The OID mapping for registered PKCS#7 classes.

*/

protected Map getOIDMap()
{

return map_;
}

/**

* Returns the prefix that is prepended to strings in the mapping

* returned by {@link #getOIDMap getOIDMap()} in order to form the fully

* qualified class name.

*

* @return The prefix of class names in the mapping.

*/

136

protected String getPrefix()
{

return PREFIX_;
}

}

137

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich , Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec.examples.oidRegistry;

import codec.asn1.ASN1Exception;

import java.io.IOException;

/**

* This class shows how an ASN.1 object implmenting an ANY DEFINED BY type is

* created , encoded and decoded with the help of an OIDRegistry.

*

* @author Alberto Sierra

* @version "$Id: CodingDecodingExample.java ,v 1.2 2004/08/05 13:21:04 pebinge

*/

public class CodingDecodingExample
{

/**

* DOCUMENT ME!

*

* @param args DOCUMENT ME!

*/

public static void main(String [] args)
{

ErrorMessage asn1Object;
byte[] encodedAsn1Object;
StringBuffer buf;
String octet;
ErrorMessage newAsn1Object;

/* Create ASN.1 object.

*/

asn1Object =
new ErrorMessage(

"1.2.3.4.5",
new ErrorParameterType1(true , "BUSSY"));

/* Print the ASN.1 object to the standard output.

*/

System.out.println("ASN.1�object:�");
System.out.println(asn1Object.toString());
System.out.println();

138

/* Encode the ASN.1 object and store the encoded data in

* encodedAsn1Object.

*/

encodedAsn1Object = null;
try
{

encodedAsn1Object = asn1Object.getEncoded();
}
catch (ASN1Exception e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�encoding.");
e.printStackTrace();

}

/* Print the encoded data to the standard output in hexadecimal

* representation.

*/

buf = new StringBuffer();

for (int i = 0; i < encodedAsn1Object.length; i++)
{

octet = Integer.toHexString(encodedAsn1Object[i] & 0xff);
buf.append("�0x");
if (octet.length () == 1)
{

buf.append(’0’);
}
buf.append(octet);

}

System.out.println("Encoded�ASN.1�object:");
System.out.println(buf.toString());
System.out.println();

/* Decoding process.

*/

/* Create new empty object of the expected class. This object will

* store the decoded values.

*/

newAsn1Object = new ErrorMessage();

/* Decode the data stored in encodedAsn1Object and store it in

* newAsn1Object.

*/

139

try
{

newAsn1Object.decode(encodedAsn1Object);
}
catch (ASN1Exception e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}
catch (IOException e)
{

System.out.println("Error�during�decoding.");
e.printStackTrace();

}

/* Print the new decoded ASN.1 object to the standard output.

*/

System.out.println(
"New�ASN.1�object�got�by�decoding�the�previous�bytes:");

System.out.println(newAsn1Object.toString());
System.out.println();

}
}

140

Bibliography

[1] ITU-T Recommendation X.680 - Abstract Syntax Nota-
tion One (ASN.1): Specification of Basic Notation, 1997.
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x680.html

[2] ITU-T Recommendation X.690 - ASN.1 Encoding Rules: Spec-
ification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distingushed Encoding Rules (DER), 1997.
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x690.html

141

http://www.itu.int/itudoc/itu-t/rec/x/x500up/x680.html
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x690.html

	Introduction to CODEC
	Introduction to ASN.1
	Simple Coding/Decoding Example
	How to implement SEQUENCE types
	How to implement SEQUENCE OF types
	Note about SET and SET OF types
	How to implement CHOICE types
	How to implement ENUMERATED types
	How to implement optional fields
	How to implement tagging
	How to implement default values
	How to implement ANY types
	The OID Registry
	Coding/Decoding Example
	SEQUENCE Example
	SEQUENCE OF Example
	CHOICE Example
	ENUMERATED Example
	OPTIONAL Fields Example
	Tagging Example
	DEFAULT Values Example
	ANY DEFINED BY Example
	OIDRegistry Example

